A Light CNN for Deep Face Representation with Noisy Labels
نویسندگان
چکیده
Convolution neural network (CNN) has significantly pushed forward the development of face recognition and analysis techniques. Current CNN models tend to be deeper and larger to better fit large amounts of training data. When training data are from internet, their labels are often ambiguous and inaccurate. This paper presents a light CNN framework to learn a compact embedding on the large-scale face data with massive noisy labels. First, we introduce the concept of maxout activation into each convolutional layer of CNN, which results in a Max-Feature-Map (MFM). Different from Rectified Linear Unit that suppresses a neuron by a threshold (or bias), MFM suppresses a neuron by a competitive relationship. MFM can not only separate noisy signals and informative signals but also plays a role of feature selection. Second, a network of five convolution layers and four Network in Network (NIN) layers are implemented to reduce the number of parameters and improve performance. Lastly, a semantic bootstrapping method is accordingly designed to make the prediction of the models be better consistent with noisy labels. Experimental results show that the proposed framework can utilize large-scale noisy data to learn a light model in terms of both computational cost and storage space. The learnt single model with a 256-D representation achieves state-of-the-art results on five face benchmarks without fine-tuning. The light CNN model is released on https://github.com/AlfredXiangWu/face verification experiment.
منابع مشابه
An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملLearning with Noisy and Trusted Labels for Fine-Grained Plant Recognition
The paper describes the deep learning approach to automatic visual recognition of 10 000 plant species submitted to the PlantCLEF 2017 challenge. We evaluate modifications and extensions of the state-ofthe-art Inception-ResNet-v2 CNN architecture, including maxout, bootstrapping for training with noisy labels, and filtering the data with noisy labels using a classifier pre-trained on the truste...
متن کاملLearning Deep Face Representation
Face representation is a crucial step of face recognition systems. An optimal face representation should be discriminative, robust, compact, and very easyto-implement. While numerous hand-crafted and learning-based representations have been proposed, considerable room for improvement is still present. In this paper, we present a very easy-to-implement deep learning framework for face representa...
متن کاملScalable Image Annotation by Summarizing Training Samples into Labeled Prototypes
By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...
متن کاملAuxiliary Image Regularization for Deep CNNs with Noisy Labels
Precisely-labeled data sets with sufficient amount of samples are notably important for training deep convolutional neural networks (CNNs). However, many of the available real-world data sets contain erroneously labeled samples and the error in labels of training sample makes it a daunting task to learn a well-performing deep CNN model. In this work, we consider the problem of training a deep C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015